A closed form solution for pollutant dispersion in atmosphere considering nonlocal closure of the turbulent diffusion
نویسندگان
چکیده
Atmospheric air pollution turbulent fluxes can be assumed proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Moreover, large eddies are able to mix scalar quantities in a manner that is counter to the local gradient. In this work we present an analytical solution of the three-dimensional steady state advection-diffusion equation, considering nonlocal turbulence closure using the Integral Transform Technique (GILTT). Numerical results and statistical comparisons with experimental data are presented.
منابع مشابه
Analytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants
Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral i...
متن کاملA Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing
The modeling of the atmospheric boundary layer during convective conditions has long been a major source of uncertainty in the numerical modeling of meteorological conditions and air quality. Much of the difficulty stems from the large range of turbulent scales that are effective in the convective boundary layer (CBL). Both small-scale turbulence that is subgrid in most mesoscale grid models an...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملClosed-form Solution of Dynamic Displacement for SLGS Under Moving the Nanoparticle on Visco-Pasternak Foundation
In this paper, forced vibration analysis of a single-layered graphene sheet (SLGS) under moving a nanoparticle is carried out using the non-local elasticity theory of orthotropic plate. The SLGS under moving the nanoparticle is placed in the elastic and viscoelastic foundation which are simulated as a Pasternak and Visco-Pasternak medium, respectively. Movement of the nanoparticle is considered...
متن کامل